Wednesday 12 September 2018

Things You Should Know A High Voltage Contactor

By Robert Hughes


Developments in semiconductor technology have led to the innovation of solid state switches that can replace thyratrons, ignition and spark gaps that were being used before. Older electronics used drivers that are being replaced by TTL input. These advances have improved the efficiency of switches over time. A high voltage contactor has the flow features that make them one of the best inventions.

There is a lower input power loss compared to another type of switches. This is attributed to the use of MOSFET technology. This technology dramatically decreases the power losses. This power loss can be attributed to the total charge, voltage and the frequency of the switch. When the gate charge is small it means that the input loss will also be minimal. This is totally different from switches that use bipolar transistors where input power losses are very high.

These are the most reliable and efficient switches when it comes to current equipment. Most of this equipment requires a steady saturation even when short circuited. In switch mode supplies, these contactors use smaller inductors because switching is done at fast speeds. This greatly improves the overall efficiency of the contactors. The reliability they offer has made them the best choice for high current equipment such as medical test equipment.

These contactors can be customized in a number of ways to suit where they are being used. The customization is mostly done with the housing and the footprint. Another area that customization can be done is sensitivity. These innovations help the switches to run effectively with the equipment.

The switches have been designed to prevent cases of overload or voltage reversal. Voltage reversals have been causing adverse effects which makes them safe for use anywhere. The technologies used in these contactors reduce risks that come with handling the current.

These switches are able to handle high loads without heating. Heating has been the main concern with fuses. They are voltage controlled and do not use a lot of currents. Other models require more current to switch which leads to increases in heating especially when handling high loads. Now, the drain current does not affect the voltage at the source gate. This ensures that switches never operate linearly.

Faster switching is guaranteed with these switches. This is because they are able to handle high frequencies. The switching losses are incredibly low compared to other switches. The gate of transistors used in these contactors is insulated with a thin oxide layer which means they do not need to draw current when switching. This has an advantage in speed and the time taken to switch.

These switches are suitable for both low-power applications and current applications. Their unique features and technology help achieve great results with very minimal risks. They are durable and can survive millions of cycles. The above features are just a few of many that make the switches suitable for day-to-day use. The technology also has a number of limitations. More developments are still being made to ensure that these limitations are dealt with to ensure efficiency in switching.




About the Author:



No comments:

Post a Comment